
Autores:

Docentes: DCV Carina Boccanera y DCV Laura Lara / Titular: Flavio Mammini / Adjunta: DCV Silvina Basile.

Cómo citar este texto:

Boccanera, C.; Lara, L.; Mammini, F.; Basile, S. (2021). Apuntes de Cátedra: El color en la industria gráfica. Facultad de Artes - UNLP.

Esta obra está bajo una licencia Creative Commons <u>Atribución-NoComercial-Sin Obra Derivada</u>

EL COLOR EN LA INDUSTRIA GRÁFICA

Desde que nacemos, nuestra existencia está fuertemente atravesada por nuestros sentidos, a través de los cuales comenzamos a experimentar el mundo que nos rodea. De este modo, vamos adquiriendo un cúmulo de significados, incluso de algo tan elemental como el efecto de la luz y de los colores en nuestras vidas.

Hoy en día resultaría impensable realizar el ejercicio de imaginar un mundo sin colores, donde toda nuestra realidad se manifestara exclusivamente entre el blanco y el negro. Imaginarse, en el siglo XXI, los principales museos del mundo repletos de cuadros con escala de grises o el cine y la televisión como la veían nuestros abuelos. Nos parecería más un ejercicio fantástico que una posibilidad factible.

El objetivo de este documento es adentrarnos en las varias dimensiones que se relacionan recíprocamente al momento de referirnos a los colores, sea en lo que hace a las cuestiones más vinculadas a la física y la biología, así como también a los procesos de construcción social y cultural que dotan de un determinado (aunque variable, según el contexto) significado a los colores.

En este sentido, cuando estudiamos el color, podemos dividirlo en **dos grandes teorías**: una de ellas fue desarrollada por **Isaac Newton** y se denomina **Teoría Física**, la cual ha sido justificada mediante experimentos y estableciendo leyes que fundamentan los fenómenos del color; por otro lado, contamos con la denominada teoría basada en la intuición, que fue impulsada por filosófos, escritores, pintores y poetas, plasmada por **Johann Wolfgang von Goethe** en su **Teoría del Color**.

Es de suma importancia el rol del color en la comunicación visual. Semánticamente nos determina, y en algunos casos refuerza los conceptos o ideas que necesitamos reproducir en las piezas gráficas; produciendo una respuesta emocional en el receptor del mensaje impreso.

Culturalmente, según las condiciones y nivel de desarrollo social, nos llevan a realizar asociaciones instintivas según los colores que vemos. Los mismos tienen connotaciones diferentes y las reacciones que pueden provocar ante ellas, dependen de la cultura, la moda, la edad y las preferencias personales. Por ejemplo, en nuestro mundo occidental y globalizado, cuando vemos una botella con bebida cola, con etiqueta roja y blanca, aunque no aparezca la marca del producto, automáticamente adquiere un significado por parte de quien la observa, asociando los colores a la marca reconocida mundialmente. A su vez, en términos de símbolos que connotan un determinado significado, al

observar una paloma cualquiera, puede que ésta no nos "brinde" algún significado en particular. Sin embargo, al ver la representación de una paloma blanca, generalmente ésta adquiere un significado íntimamente vinculado a la paz.

El ejercicio que se propone a continuación, es desentrañar el mundo de los colores y de la luz -binomio inseparable-, poder aprenhender su esencia y, de este modo, contar con las herramientas necesarias para poder implementarlas en la práctica profesional.

1. TEORÍA FÍSICA

Comencemos a comprender la primera **Teoría Física** del color teniendo como rol principal a la luz en este engranaje: objeto, luz incidente, ojo y cerebro.

Podemos afirmar que la luz es la condición para que exista el color: este último se encuentra únicamente allí donde hay luz.

El sol es la principal fuente de luz natural y su iluminación determina el estándar de nuestra percepción del color.

a. LA LUZ

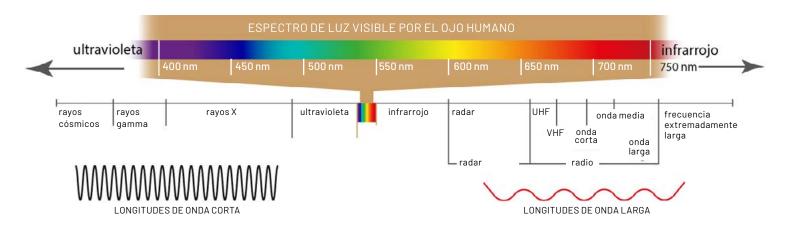
La luz es una forma de energía que nos permite ver el color y la forma de los objetos. Algunos objetos emiten luz, y por eso se denominan fuentes luminosas. Esas fuentes pueden ser naturales, como el sol y demás estrellas, o artificiales, como las lámparas o las pantallas.

Hay objetos que reflejan la luz y son cuerpos iluminados. Ellos absorben parte de la luz que reciben, y reflejan otra parte. La luz que absorbe o refleja un cuerpo depende de muchos factores como la naturaleza de los materiales que lo forman, el tipo de superficie o su rugosidad por citar solo algunos.

Si un cuerpo opaco es iluminado con luz blanca, el mismo absorbe una parte de la luz que recibe y refleja otra y ésta corresponde al color que nosotros observamos de ese objeto. De acuerdo con esto, pueden observarse distintas situaciones:

Si el objeto refleja todos los colores y no absorbe ninguno, lo veremos de color blanco; si absorbe todos los rayos

que forman la luz blanca y no refleja ninguno, lo veremos de color negro y si absorbe todos los colores menos uno, lo veremos del color de la luz que refleje. Si, por ejemplo, vemos un objeto de color rojo es porque al incidir sobre él la luz blanca, este objeto absorbe todos los colores excepto el rojo.


El primer fundamento del espectro visible proviene del S XVIII. El físico inglés Isaac Newton comprobó que al hacer pasar luz blanca por un prisma de cristal, ésta se descomponía en diferentes colores. Demostró que la luz blanca, como la del sol, está compuesta por todos los colores del espectro visible: el violeta, el índigo, el azul, el verde, el amarillo, el naranja y el rojo.

La descomposición de la luz se debe a que cada color tiene una longitud de onda y una frecuencia características.

El sol emite radiación electromagnética a través de un amplio espectro de longitudes de onda que van desde las ondas de radio a los rayos gamma. La longitud de onda, definida en nanómetros (nm: es la millonésima parte del milímetro), se mide desde el pico de la onda al pico de la onda adyacente. El ojo humano sólo es sensible a una pequeña gama de estas longitudes de onda denominada luz blanca, que va desde los 380 (violeta) a los 780 nm aproximadamente (rojo).

• Espectro electromagnético

Dentro de éste, nos encontramos con ondas de longitudes más largas: son las radiaciones infrarrojas (IR). Si bien son radiaciones invisibles, el cuerpo humano las percibe en forma de calor. Hacia arriba de la banda de radiación

visible se encuentra la radiación ultravioleta (UV). Son ondas también invisibles que producen el bronceado en la piel. Ondas electromagnéticas más cortas son los Rayos X, los Rayos Gamma, ambos penetran por la piel y pueden causar algún daño a nuestro cuerpo.

Absorción y reflexión de la luz

La mayoría de la luz que llega a nuestros ojos empieza siendo luz blanca (del sol o de una fuente artificial) y llega a nosotros reflejada por el objeto. Cuando la luz incide en el mismo, la superficie del objeto absorbe determinadas gamas de longitud de onda y refleja otras partes del espectro. La luz reflejada contiene una mezcla de longitudes de onda que le proporcionan el color.

La luz visible es el rango de longitudes de onda dentro del espectro electromagnético al que el ojo responde. Nosotros percibimos las ondas a través del color, el violeta posee la longitud de onda más corta y el rojo la más larga.

Como hemos mencionado anteriormente, la luz reflejada por el objeto incide en la retina y estas ondas son captadas por foto receptores que se encuentran en ella, esta información es conducida a través del nervio óptico hacia el cerebro.

En este sentido, como sostienen Martín y Gonzalez, el color **"es una sensación que producen los rayos luminosos en** los órganos visuales y que es interpretada por el cerebro como color".

b. EL 0J0

A través del ojo, órgano de la visión, percibimos las formas y los colores del mundo que nos rodea, debido a ello es necesario a explicar brevemente su naturaleza y el proceso:

El ojo dispone de un sistema óptico que puede compararse con una cámara fotográfica. La luz, y con ello la imagen óptica, pasa a través del ojo regulada por el iris que controla la cantidad de luz que atraviesa el cristalino formándose sobre la retina.

La retina es una capa sensible a la luz ubicada en la parte trasera del ojo. En ella se encuentran células que contienen sustancias químicas que se descomponen al incidir la luz, generando impulsos eléctricos que llegan al cerebro a través de los nervios. Dichas células son de dos tipos y se reconocen por su forma en:

Bastoncillos o bastones

Reaccionan sólo a la intensidad luminosa: se activan en la oscuridad, gracias a ellos percibimos la sensación de claro/ oscuro y nos permiten distinguir el negro, el blanco y los distintos grises. Cualquier persona con una visión normal, en un ambiente muy poco iluminado puede distinguir formas, pero ya no los colores.

Conos

Funcionan con la luz y hacen posible la visión a las diferencias cromáticas. Y a su vez se diferencian en tres clases:

Clase B: responden a la radiación más corta 400 a 500 nm. Los impulsos que recibe el cerebro se traducen en la sensación cromática denominada color azul.

Clase G: responden a longitudes de onda entre los 500 a 600 nm. La percepción sensorial corresponde al verde. **Clase R:** reaccionan a la radiación de las ondas más largas 600 a 700 nm. La exitación de estos conos produce la sensación de color rojo.

De aquí es que decimos que el rojo, verde y azul son los colores primarios de la luz.

2. TEORÍA DEL COLOR. PERCEPCIÓN

Hay una segunda teoría acerca del color con bases en la Psicología, destacando la percepción humana como el aspecto olvidado por las teorías newtonianas, dando un primordial papel a la percepción del color, al aspecto subjetivo de éste, atribuyéndole un valor determinado, una especie de personalidad a los colores.

El precursor de la psicología del color fue el poeta y científico alemán Johann Wolfgang von Goethe (1749-1832) que en su tratado "Teoría del color" se opuso a la visión meramente física de Newton, proponiendo que el color en realidad depende también de nuestra percepción, en la que se halla involucrado el cerebro y los mecanismos del sentido de la vista. De acuerdo con la teoría de Goethe, lo que vemos de un objeto no depende solamente de la materia; tampoco de la luz de acuerdo a Newton, sino que involucra también a una tercera condición que es nuestra percepción del objeto.

Ningún color carece de significado. En un aspecto más psicológico, el color se muestra como portador de expresiones,

de sensaciones, posee ciertos simbolismos, lenguaje y significados que varían según el contexto (social y cultural) de quien lo observe y considere. Por lo anterior, la dimensión contextual de los colores cumple un rol de gran relevancia a la hora de influir sobre las conductas humanas.

La relación de los colores con nuestros sentimientos demuestra cómo ambos no se combinan de manera accidental, las asociaciones no son cuestiones de gusto ni tampoco objetivas, sino experiencias que están enraizadas en nuestro lenguaje y en nuestro pensamiento. Todas las asociaciones que hacemos son una consecuencia de nuestro aprendizaje social y cultural, por lo que nos resulta prácticamente imposible observer algo que desconocemos.

Subjetivamente el color permite comunicar mejor a través de su simbolismo, reforzando y acentuando semánticamente el mensaje emitido. El color es una herramienta de comunicación funcional y fundamental dentro de este mecanismo.

3. MODELOS DE COLOR

Para entender los párrafos que siguen es indispensable partir de la base que, al momento de hablar de color luz, estamos haciendo referencia a la denominada "síntesis aditiva". Por otra parte, cuando hablamos de color pigmento, nos referimos a la "síntesis sustractiva". Un pequeño gráfico nos delinea estos conceptos:

El color está sometido a ciertas leyes y, según la aplicación que se desea, se trabaja con distintos modelos de color. Estos últimos describen los colores que se observan en las imágenes digitales e impresas y el trabajo con ellos.

SÍNTESIS ADITIVA

Cada modelo de color como, por ejemplo el RGB o el CMYK, representa un método diferente (y por lo general, numérico) de descripción de los colores.

a. SÍNTESIS DE COLOR ADITIVA. MODELO RGB

Los colores que se obtienen naturalmente a través de la descomposición de la luz proveniente de una fuente lumínica, ya sea natural o artificial, los denominamos colores aditivos. En la **síntesis aditiva**, no es necesaria la unión de todas las longitudes del espectro visible para obtener el blanco: si mezclamos rojo, verde y azul, la suma de los tres obtenemos el blanco.

El ojo humano detecta grados variables de verde, rojo y azul, los colores primarios de los que se compone la luz y que, en la ciencia de los colores, se conocen como aditivos primarios. En este sentido, esta síntesis aditiva generalmente la vemos aplicada

...en las pantallas de televisores, monitores y programas de diseño y manejo fotográfico, orientados a la creación de imágenes cuyo destino sea la publicación en la Web o sobre una pantalla de proyección. En el caso de los televisores y monitores, cada uno de los fósforos que componen la pantalla contiene un impulso de uno de los colores primarios de la luz [...] La síntesis aditiva es el intento tecnológico de imitar la forma de trabajo de la vista. La gama de cada color se logra por los correspondientes en los tres campos de recepción de los tipos de conos, donde el valor diferencial restante se une en calidad y cantidad parcial al color negro. (Calvo Ivanovic, Ingrid)

Este modelo de color es el formado por los colores primarios luz **Rojo**, **Verde y Azul**. En inglés, se lo conoce por las siglas **RGB** que hacen referencia a los colores Red, Green y Blue. Las imágenes RGB utilizan estos tres colores para reproducir en pantalla hasta 16,7 millones de colores.

Como ya fue mencionado, la combinación de estos tres colores sumados en igual intensidad forman el blanco. Por otra parte, los demás colores se crean a partir de la combinación del rojo, verde y azul en diferentes proporciones e intensidades, dando lugar a la mezcla aditiva. El negro se obtiene a partir de la ausencia total de estos colores.

La luz verde y azul juntas y en iguales cantidades crean el cyan (C); la luz roja y el azul, el magenta (M); y la luz roja y verde, el amarillo (Y). Estos tres colores CMY reciben el nombre de colores secundarios luz.

b. SÍNTESIS DE COLOR SUSTRACTIVA. MODELO CMYK

En cuanto a la síntesis sustractiva, podemos afirmar que ésta es exactamente el opuesto a su contraparte aditiva, dado que la primera se basa en la capacidad de absorción y reflexión. De hecho "este fenómeno se produce al ocupar pigmentos, donde el color final de una zona va a depender de las longitudes de onda de la luz incidente reflejadas por los pigmentos de color de la misma. Por eso, los colores resultantes de una mezcla sustractiva son llamados colores pigmento" (Calvo Ivanovic, Ingrid)

Todas las sustancias absorben, transmiten o reflejan longitudes de onda específicas de la luz blanca. Un material blanco opaco refleja todas las longitudes de onda, mientras que uno negro las absorbe todas. Los colores impresos, o cuatricromías, se basan en la naturaleza reflexiva de los pigmentos y del papel.

Los pigmentos **cyan**, **magenta y amarillo** sustraen diferentes cantidades de rojo, verde y azul de la luz blanca, actuando como **filtros**, para ofrecer una gama limitada de colores del espectro.

En el proceso de reproducción por cuatricromía se utilizan como colores primarios pigmento, el cyan, magenta y amarillo para poder reproducir el resto de los colores.

Estas tintas tienden a formar negro cuando se combinan puros y se aproximan al blanco cuando se reducen sus niveles. Como los pigmentos de las tintas de impresión son menos puros que los colores fotográficos, no se puede obtener negro puro sobreimprimiendo tintas CMY sólidas. Por esta razón se imprime además con tinta negra (K).

Las impurezas de las tintas de impresión junto con la reflectancia incompleta del papel de impresión suelen dar como resultado una gama de colores más reducida. Las pantallas RGB pueden mostrar un espectro de colores más amplio de los que se pueden combinar en impresión. Algunos colores CMYK pueden no coincidir con la pantalla.

Los colores sustractivos (CMY) y los aditivos (RGB) son colores complementarios. Cada par de colores sustractivos crea un color aditivo y viceversa.

c. MODELO HSV O ATRIBUTOS DEL COLOR

El modelo HSV se representa con siglas originadas del inglés Hue (Matiz), Saturation (Saturación), Value (Valor),

también denominado modelo HSB Hue (Matiz), Saturation (Saturación), Brightness (Brillo). Estos atributos hacen que cada color sea único, los mismos deben ser controlados para disponer de una buena reproducción en color.

. Tono o matiz:

Es la propiedad a la que nos referimos cuando llamamos a un color por su nombre, por ej. rojo, morada o verde azulado.

. Saturación o intensidad:

Describe la intensidad del color y su alejamiento del gris. Puede variar de muy intenso a muy débil. Está relacionado con la pureza del color (a mayor saturación, mayor es la pureza del color).

. Valor o luminosidad:

También llamado brillo o luminosidad, indica la claridad u oscuridad de un color, es decir, cuánto se aproxima al blanco o al negro. El valor es la propiedad que determina, por ejemplo, si un color es rosa pálido o negro rojizo.

d. MODELO CIE Y CIE L*A*B*

La Comission Internationale de l'Éclairage (CIE), organismo internacional para el estudio y estandarización de la luz y todo lo relacionado a ella (color), en 1931 estableció el **espacio de color CIE**. Basándose en una serie de experimentos realizados a finales de los años 1920 por W. David Wright y John Guild definieron con precisión matemática los primeros espacios de color donde los tres colores primarios del modelo aditivo de color, permiten crear todos los demás.

Este modelo se basa en los tres colores luz primarios, rojo, verde y azul, llamándolos X, Y y Z respectivamente, dado que el ojo humano tiene tres tipos de conos que responden a diferentes rangos de longitudes de onda.

En el modelo CIE los colores puros descansan sobre un plano con forma de herradura, representando todos los colores visibles.

Denominamos **Espacio de colo**r a la organización matemática de los colores dentro de un ámbito específico como un diagrama. Los espacios de color más utilizados son aquellos establecidos por CIE, considerados estándares internacionales. Abarcan los colores perceptibles por el ojo humano medio.

Así como nuestros ojos no pueden ver algunas zonas del espectro visible, los dispositivos que utilizamos para la manipulación del color tampoco pueden representarlo tal cual lo vemos, es por ello que se estandariza a principios del siglo pasado. De este modo las limitaciones de reproducción de cada espacio de color queda determinada matemáticamente, creando una herramienta de gran utilidad a la hora de elegir el espacio de color a utilizar de acuerdo al medio de reproducción que más adelante emplearemos para imprimir.

En 1976 se perfeccionó y fue publicado el CIE LAB Color System, que desarrolló las coordenadas absolutas L*a*b* para describir los colores que puede percibir el ser humano.

El modelo de color L*a*b* es tridimensional y cada color queda unívocamente ubicado por tres coordenadas (semejante a un punto en el espacio P cuyas coordenadas son x, y, z). Las tres coordenadas son en este modelo L*, a* y b*:

El eje L* representa la luminosidad del color, siendo L*= 0 negro y L*=100 blanco.

El **eje a*** indica qué tan rojo o verde es el color. Valores de a* negativos indican que el color es verde mientras valores positivos de a* indican que el color es rojo.

El **eje b*** representa qué tan azul o amarillo es el color. Para valores de b* negativos el color es azul y para valores positivos el color tiende al amarillo.

4. RELACIÓN ENTRE EL COLOR DIGITAL E IMPRESO

Los colores que vemos en la vida real, en nuestro entorno, tienen una gama mucho mayor a los colores de la pantalla de nuestros dispositivos y a su vez estos colores son aún más nuemerosos de los que podemos representar sobre el papel.

En el entorno digital, cuando estamos percibiendo y manipulando los colores a través de dispositivos que emiten luz como las pantallas o bien captamos imágenes mediante escáneres o cámaras fotográficas, lo estamos haciendo combinando en diversas proporciones luz RGB.

Por el contrario cuando manipulamos impresos, los colores que percibimos son el producto de la mezcla de pigmentos sobre un soporte. El resultado de los colores que van a imprimirse suelen describirse como porcentajes de los cuatro colores de cuatricromía: CMYK.

Los colores planos como los que suministra Pantone, tienen una gama un poco más amplia que la combinación CMYK, igual que los nuevos métodos de impresión Hi-Fi Color.

El espacio de color visible es mucho mayor al que podemos reproducir en un impreso.

Cuando se elige el color de reproducción, es importante tener en cuenta que no todos los colores pueden reproducirse en la imprenta. Cada método de reproducción tiene su propia limitación: la gama de colores que puede reproducir; la química de las tintas de impresión y las física de los colores sustractivos (opacos) acotan la gama de colores que puede reproducirse en cuatricromía.

5. GESTIÓN DEL COLOR

Cada dispositivo que utilizamos tiene su propio espacio cromático, su propia gama, su propia definición. A medida que una imagen pasa de la digitalización al diseño, a las pruebas, y a la impresión final, cada dispositivo del flujo de trabajo introduce sutiles cambios en el color.

Lo que generalmente vemos en pantalla no coincide al 100 % con lo que vemos en el impreso.

La gestión del color es el proceso que consiste en armonizar los colores de una manera previsible y reproducible a lo largo de la cadena gráfica. La cámara fotográfica, el escáner, las pantallas, la impresora, la tecnología de tinta y el papel son elementos de esta cadena gráfica que ven o interpretan y reproducen los colores de diferentes maneras.

El sistema de impresión a utilizar es el que nos determina el espacio de color que debemos emplear. Teniendo en cuenta siempre que el espacio de color elegido contenga la gama cromática que se pueda representar en el soporte a imprimir.

Un **sistema de gestión de color (CMS**, Color Management System) se encarga de sistematizar todos estos elementos entre sí, utilizando un lenguaje común, para obtener un resultado lo más fiel posible. Para lograrlo, utiliza el estándar ICC (International Color Consortium creado en 1993) representado por los perfiles ICC.

Un perfil es una descripción matemática del espacio de color de un dispositivo. Por ejemplo, el perfil de un escáner

indica a un sistema de gestión de color cómo "ve" los colores el escáner. El CMS se vale de la creación de perfiles para cada dispositivo, en base a la lectura digitalizada de muestras medidas con un colorímetro y el enlace final con una correcta calibración del monitor.

Los sistemas de Gestión del color (CMS) solucionan la falta de equivalencia de los colores entre los dispositivos tomando un espacio de color estandar como el CIE LAB.

Cuando gestionamos colores para su posterior impresión, es importante tener en cuenta todos los factores enumerados en este capítulo, con el único fin que "salgan bien impresos los colores"

Las principales consideraciones para que esto no ocurra: los diseños se crean y se editan en una pantalla que emite luz, la misma forma la imagen combinando los 3 colores primarios RGB. Luego al trasladar este diseño a la impresión, nos encontramos con que las máquinas impresoras emplean tintas para generar esa imagen en un soporte. Las tintas empleadas son CMYK. Para poder imprimir esta imagen, debemos convertir de un modelo a otro de color.

Aquí es donde se presentan las dificultades si no tenemos bien en claro que en la conversión de un modelo a otro podemos perder información de color. Para que esto no ocurra, debemos tener bien calibrados los dispositivos para una adecuada gestión, según los perfiles de color empleados.

Una buena gestión del color hace posible que nuestro objetivo final, a la hora de imprimir se cumpla: los colores creados en el impreso final correspondan a los colores originados en el proceso creative de la pieza gráfica.